6 research outputs found

    Modelling Classroom Space Allocation at University of Rwanda-A Linear Programming Approach

    Get PDF
    Education and training play a key role as the human capital function. This is especially true for tertiary education. However, infrastructure and equipment limitations are some factors that limits levels of students\u27 enrollment in universities. This is moreso the case in developing countries where much of the infrastructure developments are donor-funded. For institutional managers and administrators, the allocating of the limited available classroom space is a constant problem that needs sophisticated approaches to deal with. Linear Optimization technique has shown promise in dealing with this problem. This research seeks to assess the Rwandan education system and highlight strides made to broaden access to tertiary education. Using data accessed from the College of Science and Technology for the 2019/2020 academic year, a linear programming model is formulated to assess the level of usage of the available classroom space at the College. The model is solved using the Dual Simplex algorithm via the Cplex solver implemented in AMPL. A solution analysis shows that, out of the 68 classrooms available on the Nyarugenge campus, only 18 with a seating capacity of 2,147 are being used to facilitate the learning of approximated 4,088 students, and that 50 classrooms with a seating capacity of 1,506 are being underutilized or not being used at all. Relevant recommendations including that the college explores the usage of virtual laboratory platforms to overcome space and material limitations associated with physical laboratories are presented

    Time-and-ID-Based Proxy Reencryption Scheme

    Get PDF
    Time- and ID-based proxy reencryption scheme is proposed in this paper in which a type-based proxy reencryption enables the delegator to implement fine-grained policies with one key pair without any additional trust on the proxy. However, in some applications, the time within which the data was sampled or collected is very critical. In such applications, for example, healthcare and criminal investigations, the delegatee may be interested in only some of the messages with some types sampled within some time bound instead of the entire subset. Hence, in order to carter for such situations, in this paper, we propose a time-and-identity-based proxy reencryption scheme that takes into account the time within which the data was collected as a factor to consider when categorizing data in addition to its type. Our scheme is based on Boneh and Boyen identity-based scheme (BB-IBE) and Matsuo’s proxy reencryption scheme for identity-based encryption (IBE to IBE). We prove that our scheme is semantically secure in the standard model

    On Average Distance of Neighborhood Graphs and Its Applications

    Get PDF
    Graph invariants such as distance have a wide application in life, in particular when networks represent scenarios in form of either a bipartite or non-bipartite graph. Average distance μ of a graph G is one of the well-studied graph invariants. The graph invariants are often used in studying efficiency and stability of networks. However, the concept of average distance in a neighborhood graph G′ and its application has been less studied. In this chapter, we have studied properties of neighborhood graph and its invariants and deduced propositions and proofs to compare radius and average distance measures between G and G′. Our results show that if G is a connected bipartite graph and G′ its neighborhood, then radG1′≤radG and radG2′≤radG whenever G1′ and G2′ are components of G′. In addition, we showed that radG′≤radG for all r≥1 whenever G is a connected non-bipartite graph and G′ its neighborhood. Further, we also proved that if G is a connected graph and G′ its neighborhood, then and μG1′≤μG and μG2′≤μG whenever G1′ and G2′ are components of G′. In order to make our claims substantial and determine graphs for which the bounds are best possible, we performed some experiments in MATLAB software. Simulation results agree very well with the propositions and proofs. Finally, we have described how our results may be applied in socio-epidemiology and ecology and then concluded with other proposed further research questions

    Assessment of the Impact of COVID-19 on Operations of Local Businesses and Level of Enforcement of Public Health Safety Measure within Business Premises: A Quantitative Study of Businesses in Huye-Rwanda

    No full text
    The impact of COVID-19 has been felt across all sectors, from transportation, education, and public works to the daily operations of businesses like selling, retailing, and so forth. The business sector is among those badly affected, especially micro, small, and medium enterprises. The understanding of ground prevailing conditions is key in driving informed policies that would have meaningful impact on society with regard to overcoming the effects of the virus. Hence, this work is an attempt to report the real ground statistics and necessity of technological support with the goal of submitting a report of recommended policies to the concerned authorities. In this direction, this work presents the outcome of a survey conducted to assess the impact of COVID-19 on operations of micro, small, and medium enterprises and also to find out the interventions put in place around business environments so as to enforce adherence to COVID-19 health safety measures. The survey was part of a study to develop automated IoT-powered technological solutions that would help to enforce proper mask wearing in indoor environments and also observance of social distance requirements within business premises. A customized questionnaire was designed to capture data on various aspects central to the focus of the study. The study was carried out in the month of May 2021, in the Huye district of Rwanda. According to the survey findings, the major challenges faced by businesses due to COVID-19 include failure by clients to settle bills, reduced ability to expand investment, difficulty in accessing inputs domestically, lower domestic sales to consumers, and lower domestic sales to businesses. The results also reveal some positive points that most businesses were found to have: hand washing points, hand sanitizer dispensers, and mechanisms to enforce social distance between customer and customer and also customer and front desk worker. In a nutshell, this work is unique in terms of (1) the customized questionnaire about Rwanda’s needs, (2) field visit-based data collection for accurate data, and (3) including an assessment of the importance of technological intervention for better handling of public safety, especially in the MSME business sector

    Machine Learning-Based Patient Load Prediction and IoT Integrated Intelligent Patient Transfer Systems

    No full text
    A mismatch between staffing ratios and service demand leads to overcrowding of patients in waiting rooms of health centers. Overcrowding consequently leads to excessive patient waiting times, incomplete preventive service delivery and disgruntled medical staff. Worse, due to the limited patient load that a health center can handle, patients may leave the clinic before the medical examination is complete. It is true that as one health center may be struggling with an excessive patient load, another facility in the vicinity may have a low patient turn out. A centralized hospital management system, where hospitals are able to timely exchange patient load information would allow excess patient load from an overcrowded health center to be re-assigned in a timely way to the nearest health centers. In this paper, a machine learning-based patient load prediction model for forecasting future patient loads is proposed. Given current and historical patient load data as inputs, the model outputs future predicted patient loads. Furthermore, we propose re-assigning excess patient loads to nearby facilities that have minimal load as a way to control overcrowding and reduce the number of patients that leave health facilities without receiving medical care as a result of overcrowding. The re-assigning of patients will imply a need for transportation for the patient to move from one facility to another. To avoid putting a further strain on the already fragmented ambulatory services, we assume the existence of a scheduled bus system and propose an Internet of Things (IoT) integrated smart bus system. The developed IoT system can be tagged on buses and can be queried by patients through representation state transfer application program interfaces (APIs) to provide them with the position of the buses through web app or SMS relative to their origin and destination stop. The back end of the proposed system is based on message queue telemetry transport, which is lightweight, data efficient and scalable, unlike the traditionally used hypertext transfer protocol

    Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize

    No full text
    Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental to most crops and affect the expected quantity of agricultural production. Although there is no way to fully mitigate these natural phenomena, it could be much better if there is information known earlier about the future so that farmers can plan accordingly. Early information sharing about expected crop production may support food insecurity risk reduction. In this regard, this work employs data mining techniques to predict future crop (i.e., Irish potatoes and Maize) harvests using weather and yields historical data for Musanze, a district in Rwanda. The study applies machine learning techniques to predict crop harvests based on weather data and communicate the information about production trends. Weather data and crop yields for Irish potatoes and maize were gathered from various sources. The collected data were analyzed through Random Forest, Polynomial Regression, and Support Vector Regressor. Rainfall and temperature were used as predictors. The models were trained and tested. The results indicate that Random Forest is the best model with root mean square error of 510.8 and 129.9 for potato and maize, respectively, whereas R2 was 0.875 and 0.817 for the same crops datasets. The optimum weather conditions for the optimal crop yield were identified for each crop. The results suggests that Random Forest is recommended model for early crop yield prediction. The findings of this study will go a long way to enhance reliance on data for agriculture and climate change related decisions, especially in low-to-middle income countries such as Rwanda
    corecore